University Students' Satisfaction with Online Experimental Courses on the Wisdom Tree Platform: A Case Study from a Key University in Nanjing City

Shanjiahao MA School of Broadcast and Television Communication University of China, Nanjing No.3666 Hong Jing Da Dao, Jiangning Dist., Nanjing 211172, Jiangsu, CHINA Email: <u>msjhfive@outlook.com</u>

ABSTRACT

This study focuses on experimental courses in online education and explores the satisfaction of college students and its influencing factors. Centered on the experimental courses offered on the Zhihuishu platform, it delves deeply into the factors affecting student satisfaction. Through a survey of 308 respondents, the research revealed that experimental resources, course quality, and teacher instruction are the primary reasons affecting student course selection. Reliability analysis confirmed the credibility of the questionnaire, and through exploratory factor analysis, six key influencing factors were identified. Among these, the satisfaction derived from demonstration videos and experimental operation guides played a pivotal role in user satisfaction. The objective is to deepen the understanding of the online education sector and promote its continuous innovation and development.

Keywords: Online education; Experimental courses; Student satisfaction; Influencing factors

1 INTRODUCTION

The rise of online education, particularly during the global pandemic, has brought platforms like Wisdom Tree into focus. With unique online experimental courses, it has gained significant attention among university students, especially at institutions like Nanjing Institution. The study aims to examine whether these courses fulfill students' learning needs and expectations, given the increasing demand for practical, innovative, and experiential learning.

1.1 Significance of the Study

The study holds both theoretical and practical significance. Theoretically, it aims to fill the research gap in online education satisfaction, particularly concerning experimental courses. Practically, it seeks to enhance the quality and competitiveness of online education platforms like Wisdom Tree, focusing on students' learning outcomes and satisfaction.

1.2 Research Objectives

The objective is to understand university students' satisfaction with Wisdom Tree's online experimental courses and identify key factors influencing this satisfaction. This insight is intended to guide improvements in online education platforms and contribute to educational science research.

1.3 Domestic Research Review

In China, the satisfaction with online education platforms, including platforms like Wisdom Tree, has been a subject of study, focusing mainly on overall satisfaction and learning effectiveness. Recent advancements in technology, such as AR and VR, have revolutionized online experimental courses, offering more realistic and interactive learning experiences (Jiang et al., 2019). However, integrating these technologies with educational content remains a challenge.

1.4 International Research Review

Internationally, research on online education satisfaction has evolved, with studies exploring student motivation, teacher attitudes, course design, and technology application. International platforms offer specialized tools for creating high-quality experimental courses. Cultural differences in education have also been a focal point in international research (Zhang & Sun, 2022).

1.5 Research Methods

A combination of literature research and quantitative analysis methods is employed. Literature research provides a theoretical framework, while quantitative analysis, using SPSS software, includes data cleaning, descriptive statistics, correlation analysis, regression analysis, and difference analysis (Williamson & Johanson, 2017).

2 RELATED CONCEPTS AND THEORIES

2.1 Definition

Online education, emerging from the advancements in information technology, particularly the internet, extends beyond traditional education by enabling learning beyond geographical constraints (Conrad & Openo, 2018). It emphasizes interactivity, autonomy, and flexibility, allowing students to learn at their own pace and time. However, it requires greater self-discipline and self-directed learning abilities.

2.2 Development of Online Education

1960s-70s: Early distance education using mass media like broadcasting.1980s-90s: Shift towards networking with the rise of personal computers and the internet.Early 21st Century: Emergence of MOOCs platforms like Coursera and edX.2010s: Mobile learning and personalized learning via smartphones and AI technology.Early 2020s: Rapid expansion due to COVID-19, highlighting challenges in quality and equity.

2.3 Overview of the Wisdom Tree Platform

Founded in 2011 in China, the Wisdom Tree platform addresses issues in higher education with advanced technology (Wisdom Tree, 2003). It offers high-quality courses with interactive and gamified learning experiences, utilizing big data and AI for personalized learning paths. Its importance was particularly highlighted during the COVID-19 pandemic.

2.4 Theories of Student Satisfaction

Student satisfaction in education reflects students' subjective evaluation of their educational experiences, encompassing teaching quality, course content, learning resources, and overall educational environment. It's a crucial indicator for understanding students' needs and improving educational offerings (Rueda et al., 2017).

2.5 Characteristics of Online Experimental Courses

Online experimental courses blend traditional experimental teaching with online education's benefits, using simulation software and virtual laboratories. They aim to cultivate practical skills, experimental design abilities, and innovative thinking. Challenges include replicating the real-life experimental experience and ensuring reliability and safety in a virtual setting.

3 DESIGN OF VARIABLES FOR EVALUATING THE SATISFACTION OF ONLINE EXPERIMENTAL COURSES

3.1 Research Roadmap

3.2 Research Hypotheses

Based on the literature review and preliminary theoretical exploration, we propose the following hypotheses:

Hypothesis	Hypothesis Content
Item	
H1	The clarity of the video positively influences students' course
	satisfaction.
H2	The understandability of experimental operation guides positively
	influences students' course satisfaction.
H3	The practicality of experimental interaction positively influences
	students' course satisfaction.
H4	The quality of resources provided by the course positively
	influences students' course satisfaction.
Н5	The quality of teacher guidance positively influences students'
	course satisfaction.
H6	Post-course discussion and Q&A sessions positively influence
	students' course satisfaction.

Table 1: Summary of Research Hypotheses

4 EMPIRICAL TESTING OF FACTORS INFLUENCING UNIVERSITY STUDENTS' SATISFACTION WITH ONLINE EXPERIMENTAL COURSES

4.1 Questionnaire Design

The questionnaire was meticulously crafted based on extensive literature review and expert consultation in online education and experimental courses (Brace, 2008). It underwent five revisions over a month to ensure its scientific soundness and applicability. The process involved:

Organizing and Evaluating: A comprehensive preliminary literature review was conducted to define key concepts and dimensions of online experimental courses and satisfaction. This stage was crucial to ensuring the questionnaire's relevance and scientific validity.

Scale Selection: The final questionnaire comprised 15 items across three categories:

Demographic Information and Background: Collecting basic respondent information like gender, age, educational level, and major.

Usage Situation: Understanding respondents' usage patterns and reasons for choosing the Wisdom Tree platform.

Satisfaction Assessment: Focusing on various aspects of the online experimental courses, including course content, demonstration videos, operation guides, interaction sessions, resources, teacher guidance, and post-experiment discussions. Satisfaction levels were measured using a 5-point Likert scale, ranging from "very dissatisfied" to "very satisfied.".

4.2 Data Collection

The survey targeted users of online experimental courses on the Wisdom Tree platform. The respondents, including university students, graduate students, and professionals interested in online experimental courses, were required to have prior experience with these courses to ensure the specificity of the survey.

4.3 Distribution and Collection of Questionnaires

Data collection was conducted online via social media platforms like WeChat. The survey began on October 1, 2023, collecting 308 questionnaires, of which 300 were deemed valid after data cleanin.

4.4 Data Analysis and Evaluation

The demographic data showed a balanced gender distribution and a majority of young adult respondents. Most students studied for 1-2 hours and completed 3-4 experimental courses. Key reasons for choosing the Wisdom Tree platform included experimental resources, course quality, teacher quality, and convenience. The study concludes that optimizing experimental resources, improving course quality, and enhancing teacher training are crucial for improving student satisfaction and learning effectiveness on the platform.

The paper collected a total of 300 valid samples, describing the respondents' basic information from aspects such as gender, age, education level, and major, as detailed in the following table.

Attribute	Category	Number	Percentage
Canadan	Male	159	53
Gender	Female	141	47
	18-24 years	72	24.2
	old	75	24.3
4	24-30 years	125	45
Age	old	155	43
	30 years old	02	20.7
	and above	92	50.7
	Undergraduate		
	/College	164	54.7
Educational Loval	Student		
Educational Level	Master's	96	29.7
	Student	80	28.7
	PhD Student	50	16.7
	Biology	58	19.3
Major	Chemistry	97	32.3
	Physics	88	29.3

Table 2: Descriptive Analysis of Basic Information

	Other Related Majors	57	19
	Less than 1 hour	77	25.7
	1-2 hours	112	37.3
Average weekly Study Time on Wisdom Tree Platform	2-4 hours	69	23
	More than 4 hours	42	14
	1-2 courses	98	32.7
Number of Experimental Courses Completed on Wisdom	3-4 courses	168	56
Tree Platform	5 or more courses	34	11.3

Table 3: Main Reasons for Choosing Online Experimental Courses on the Wisdom Tree Platform?

	R	esponse	Demonstrage of Despenses
	Number	Percentage	Percentage of Responses
Convenience	156	19.70%	52.00%
Course Quality	203	25.70%	67.70%
Teacher Teaching	195	24.70%	65.00%
Experimental Resources	237	30.00%	79.00%
Total	791	100.00%	263.70%

From the table, we can deduce that the primary reason for choosing online experimental courses on the Wisdom Tree platform is the experimental resources, constituting the largest proportion at 30%. Following that, the quality of the courses accounts for 25.7%, teacher teaching for 24.7%, and convenience for 19.7%.

4.5 Reliability Analysis

Reliability analysis measures the stability and consistency of research tools (like questionnaires), assisting researchers in ensuring that the measurement tools are reliable across different contexts and over time. In this study, we use Cronbach's alpha coefficient to assess the reliability of each dimension in the questionnaire (Zacks, 2012).

Devellis (1991) suggests that for acceptable reliability, Cronbach's alpha coefficient must be greater than 0.7. In this research, the alpha coefficients for each dimension exceed this standard, indicating that the questionnaire has good internal consistency and reliability. The reliability analysis table below shows:

Dimension	Ν	a Coefficient
Satisfaction with Demonstration Videos	3	0.784
Satisfaction with Experiment Operation Guides	3	0.829
Satisfaction with Interactive Experiment Sessions	3	0.767
Satisfaction with Resources Provided by the Course	3	0.764
Satisfaction with Teacher's Guidance on Experiments	3	0.807
Satisfaction with Post-Experiment Discussion and Q&A Sessions	3	0.795
Total Scale Reliability	19	0.874

Table 4: Reliability Analysis

The alpha coefficients for each dimension are all above 0.7, with the highest being for "Satisfaction with Experiment Operation Guides" at 0.829, while "Satisfaction with Resources Provided by the Course" is slightly lower at 0.764. Overall, the total reliability alpha coefficient of the scale is 0.874, indicating good reliability of the questionnaire in this sample. The reliability analysis of this questionnaire shows good consistency, providing a solid foundation for subsequent data analysis.

4.6 Exploratory Factor Analysis

Exploratory Factor Analysis is a statistical method used to detect potential structures within data. In this study, we use Exploratory Factor Analysis to gain deeper insights into the underlying structure of student satisfaction with online experimental courses on the Wisdom Tree platform (Fabrigar & Wegener, 2012). Using SPSS 23.0, the KMO and Bartlett's Test of Sphericity were performed on the scale, with results as follows in the table.

Table 5: KMO and Bartlett's Test						
Kaiser-Meyer-Olkin Meas	0.842					
Bartlett's Test of	Approximate Chi-Square	2018.02				
Sphericity	Degrees of Freedom (df)	153				
	Significance (Sig.)	.000				

The above table indicates a KMO value of 0.842, which is greater than 0.7, and a significant Bartlett's Test of Sphericity (Sig. < 0.001). This suggests that the questionnaire data is suitable for factor analysis. Consequently, further analysis will be conducted using the principal component analysis method for factor extraction, considering factors with eigenvalues greater than 1. The factor rotation will use varimax orthogonal rotation for factor analysis. The results of the analysis are presented in the following table.

Item	Satisfacti on with Experime nt Operation Guides	Satisfaction with Teacher's Guidance on Experiments	Satisfaction with Post-Experime nt Discussion and Q&A Sessions	Satisfaction with Demonstrat ion Videos	Satisfaction with Interactive Experiment Sessions	Satisfaction with Resources Provided by the Course
B3	0.816	0.191	0.063	0.22	0.095	0.132
B1	0.81	0.163	0.156	0.151	0.16	0.111
B2	0.768	0.19	0.157	0.162	0.061	0.116
E1	0.21	0.838	0.077	0.108	0.065	0.045
E2	0.174	0.81	0.165	0.113	0.135	0.098
E3	0.124	0.762	0.106	0.132	0.134	0.091
F1	0.051	0.084	0.832	0.045	0.111	0.2
F2	0.138	0.128	0.819	0.071	0.03	0.127
F3	0.147	0.119	0.769	0.132	0.084	0.091
A3	0.127	0.075	0.112	0.8	0.153	0.104
A1	0.213	0.173	0.076	0.798	0.042	0.052
A2	0.138	0.099	0.063	0.796	0.039	0.074
C3	0.063	0.176	0.108	0.034	0.816	0.124
C2	0.138	0.092	0.11	-0.014	0.809	0.095
C1	0.07	0.048	0.003	0.213	0.781	0.009
D3	0.094	-0.003	0.095	0.076	0.049	0.831
D1	0.048	0.121	0.123	0.02	0.105	0.822
D2	0.198	0.118	0.21	0.148	0.075	0.719
Eigenvalues	2.203	2.191	2.164	2.148	2.076	2.053
Percentage of Variance	12.241	12.171	12.025	11.935	11.535	11.407
Cumulative %	12.241	24.412	36.437	48.372	59.907	71.314

Table 6: Factor Analysis Results

Component

From the table above, it can be seen that the factor analysis results identified a total of 6 factors, with a cumulative explanatory power of 71.314%, which is greater than 50%. This indicates that the 6 selected factors have good representativeness. The factor loading coefficients are shown in the table above. Each measurement item's factor loading is greater than 0.5, and cross-loadings are all less than 0.4, with each item falling into its corresponding factor. This demonstrates that the scale has good structural validity.

Before conducting exploratory factor analysis using SPSS 23.0, the KMO and Bartlett's Test of Sphericity were performed. The KMO value reached 0.842, far exceeding 0.7, indicating that the sample data is very suitable for factor analysis. Also, Bartlett's Test of Sphericity was significant (Sig. <0.001), further confirming the suitability of the data for factor analysis.

Principal component analysis was used for extracting common factors, with eigenvalues greater than 1 as the standard for factor extraction. Considering improving interpretability and conciseness, varimax orthogonal rotation was used for factor rotation.

The results revealed 6 factors. The cumulative explanatory power of these six factors reached 71.314%, meaning these factors sufficiently represent most of the information in the original variables. Further observing the factor loadings, we find that each item's factor loading is greater than 0.5, and cross-loadings are less than 0.4. These results meet the requirements for factor analysis, proving the scale's good structural validity.

In line with the study's theme, we found six key dimensions behind the satisfaction with online experimental courses on the Wisdom Tree platform, such as satisfaction with experiment operation guides, teacher's guidance on experiments, post-experiment discussion, and Q&A sessions, etc. This provides valuable insights, aiding the Wisdom Tree platform in further optimizing and refining its experimental courses to meet students' needs and expectations.

In future research, we may consider further verifying the stability and reliability of these factors or exploring other potential factors that might influence student satisfaction.

4.7 Correlation Analysis

After determining the structure of the dimensions and corresponding items through validity and reliability analysis, the average scores of each dimension's items were calculated to represent the score of that dimension, which was then used for correlation analysis (Archdeacon, 1994).

Correlation analysis primarily studies the relationship between variables, with correlation coefficients ranging between -1 and 1. The larger the absolute value, the more closely related the variables are.

This study will discuss the correlation relationships among satisfaction with demonstration videos, experiment operation guides, interactive experiment sessions, resources provided by the course, teacher's guidance on experiments, post-experiment discussion and Q&A sessions, and overall satisfaction based on this standard. The specific results are shown in the following table.

	Satisfa ction with Demon stratio n Videos	Satisfactio n with Experimen t Operation Guides	Satisfacti on with Interactiv e Experime nt Sessions	Satisfacti on with Resource s Provided by the Course	Satisfaction with Teacher's Guidance on Experiments	Satisfaction with Post-Experime nt Discussion and Q&A Sessions	Overall satisfacti on
Satisfactio n with Demonstra tion Videos	1						
Satisfactio n with Experimen t Operation Guides Satisfactio	.440**	1					
n with Interactive Experimen t	.235**	.291**	1				
Satisfactio n with Resources Provided by the Course	.245**	.335**	.231**	1			
Satisfactio n with Teacher's Guidance on Experimen ts	.333**	.460**	.303**	.255**	1		
Satisfactio n with Post-Exper iment	.253**	.344**	.228**	.373**	.322**	1	

 Table 7: Correlation Analysis

Discussion							
and Q&A							
Sessions							
Overall							
satisfactio	.403**	.472**	.298**	.366**	.361**	.372**	1
n							

Note: **, p<0.01

From the table, it can be observed that there is a significant positive correlation between the satisfaction with demonstration videos and overall satisfaction (r=0.403, p<0.01), satisfaction with experiment operation guides and overall satisfaction (r=0.472, p<0.01), satisfaction with interactive experiment sessions and overall satisfaction (r=0.298, p<0.01), satisfaction with resources provided by the course and overall satisfaction (r=0.366, p<0.01), satisfaction with teacher's guidance on experiments and overall satisfaction (r=0.361, p<0.01), and satisfaction with post-experiment discussion and Q&A sessions and overall satisfaction (r=0.372, p<0.01).

All dimensions of satisfaction in this study show significant positive correlations with overall satisfaction, indicating that these dimensions all impact students' overall feelings. Particularly, satisfaction with experiment operation guides shows the highest correlation with overall satisfaction, suggesting that in designing and offering online experimental courses, greater emphasis should be placed on providing clear and specific operation guides to improve students' overall satisfaction.

4.8 Regression Analysis

Using satisfaction with demonstration videos, experiment operation guides, interactive experiment sessions, resources provided by the course, teacher's guidance on experiments, and post-experiment discussion and Q&A sessions as independent variables, and overall satisfaction as the dependent variable, a multiple regression analysis was conducted (Golberg & Cho, 2004).

	Table 8: Regress	sion Ai	nalysis					
Dependent Variable	Independent Variables		tandar ized ficients	Standar dized Coeffici ents			Collinearit y Statistics	
			Stan dard Erro r	Beta	•t p	р	Toler ance	VI F
1	(Constant)	-0.6 24	0.348		-1.7 94	0.0 74		
Overall Satisfaction	Satisfaction with Demonstration Videos	0.2 61	0.078	0.18	3.3 43	0.0 01	0.769	1.3

Table	8.	Real	rassion	Ana	lucie
Iune	ο.	negi	ession	Anai	ysis

	Satisfaction with Experiment Operation Guides	0.2 78	0.072	0.227	3.8 66	0	0.646	1.5 47
	Satisfaction with Interactive Experiment	on with Interactive Experiment 0.1		0.007	1.9	0.0	0.054	1.1
	Sessions	28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.097	01	58	0.854	7
	Satisfaction with Resources Provided by	0.2		0.140	2.8	0.0	0.706	1.2
	the Course	08		0.149	07	05	0.796	56
	Satisfaction with Teacher's Guidance on	0.1		0.092	1.4	0.1	0 721	1.3
	Experiments	06	0.071	0.085	91	37	0.721	87
	Satisfaction with Post-Experiment	0.1	0.069	0.144	2.6	0.0	0 776	1.2
	Discussion and Q&A Sessions	81	0.008	0.144	8	08	0.770	89
R-squared	0.346							
F	25.881***							

From the table, it is evident that the R-squared value is 0.346, indicating that 34.6% of the variance in overall satisfaction is explainable. With an F-value of 25.881 and p<0.001, the model's significance is confirmed. The VIF values being less than 5 indicate no multicollinearity among the variables. Satisfaction with demonstration videos significantly positively impacts overall satisfaction (β =0.18, p<0.05), supporting the hypothesis. Satisfaction with experiment operation guides also significantly positively influences overall satisfaction (β =0.227, p<0.05), validating the hypothesis. However, satisfaction with interactive experiment sessions does not show a significant positive impact on overall satisfaction (β =0.097, p>0.05), thus the hypothesis is not supported. Satisfaction with resources provided by the course significantly positively affects overall satisfaction (β =0.149, p<0.05), supporting the hypothesis. The satisfaction with teacher's guidance on experiments does not have a significant positive effect on overall satisfaction (β =0.083, p>0.05), so the hypothesis is not supported. Finally, satisfaction with post-experiment discussion and Q&A sessions significantly positively impacts overall satisfaction (β =0.144, p<0.05), confirming the hypothesis.

4.9 Analysis of Differences

Gender

An independent sample t-test reveals that there are no significant differences between genders in terms of satisfaction with demonstration videos, experiment operation guides, interactive experiment sessions, resources provided by the course, teacher's guidance on experiments, post-experiment discussion and Q&A sessions, and overall satisfaction. Specific results are shown in the following table.

	Gender	Mean	Standard Deviation	t	р
Settification with Demonstration Without		3.704	0.887	0 745	0.457
Satisfaction with Demonstration videos	Female	3.629	0.865	0.745	0.457
Satisfaction with Experiment Operation Guides	Male	3.707	1.066	1.513	0.131
Satisfaction with Experiment Operation Guides	Female	3.525	1.006		
Satisfaction with Internative Experiment Sessions	Male	3.554	0.954	0.342	0.733
Satisfaction with Interactive Experiment Sessions	Female	3.515	0.975		
Satisfaction with Pasouraas Drovided by the Course	Male	3.270	0.876	0.246	0.73
Satisfaction with Resources Provided by the Course	Female	3.234	0.948	0.540	
Sotiofaction with Tapahar's Quidance on Experiments	Male	3.528	0.936	1 525	0.126
Satisfaction with reacher's Guidance on Experiments	Female	3.352	1.052	1.355	
Satisfaction with Post-Experiment Discussion and Q&A	Male	3.287	1.004	-0.71	0 472
Sessions	Female	3.371	1.015	9	0.475
Overall Setisfaction	Male	3.460	1.241	0 276	0 792
Overall Saustaction	Female	3.420	1.310	0.270	0.785

Table 9: Gender Difference Analysis

The analysis results indicate that there are no significant differences between men and women in terms of satisfaction across various aspects. This suggests that gender does not significantly influence the evaluation of demonstration videos, experiment operation guides, interactive experiment sessions, course resources, teacher guidance, discussion, and Q&A sessions, as well as overall satisfaction.

Age

A one-way ANOVA revealed significant differences in satisfaction with experiment operation guides and overall satisfaction among different age groups, while no significant differences were found in satisfaction with demonstration videos, interactive experiment sessions, resources provided by the course, teacher's guidance on experiments, and post-experiment discussion and Q&A sessions.

14010 10.11	Age	Mean	Standard Deviation	F	р
	18-24	3.753	0.846		
Satisfaction with Demonstration Videos	24-30	3.538	0.866	2.803	0.062
	Over 30	3.794	0.897		
Satisfaction with Experiment Operation	18-24	3.461	1.160		
Guides	24-30	3.556	1.076	3.297	0.038
Guides	Over 30	3.844	0.842		
Satisfaction with Interactive Experiment	18-24	3.575	0.972		
Sessions	24-30	3.452	0.968	0.987	0.374
	Over 30	3.627	0.946		
Satisfaction with Resources Provided by the	18-24	3.297	0.970		
	24-30	3.158	0.910	1.448	0.237
Course	Over 30	3.359	0.851		
Satisfaction with Teacher's Guidance on	18-24	3.301	1.069		
Experiments	24-30	3.393	1.007	2.709	0.068
Experiments	Over 30	3.638	0.889		
Satisfaction with Post Experiment	18-24	3.279	1.041		
Discussion and O&A Sessions	24-30	3.296	1.006	0.453	0.636
Discussion and Q&A Sessions	Over 30	3.409	0.992		
	18-24	3.450	1.302		
Overall Satisfaction	24-30	3.180	1.332	7.155	0.001
	Over 30	3.820	1.058		

Table 10: Age Difference Analysis

The results suggest significant differences in satisfaction with experiment operation guides and overall satisfaction among different age groups. Specifically, participants aged 30 and above rated higher in satisfaction with experiment operation guides and overall satisfaction. No significant differences were found in other aspects among different age groups.

Educational Level

A one-way ANOVA showed significant differences in satisfaction with interactive experiment sessions, resources provided by the course, teacher's guidance on experiments, and overall satisfaction among different educational levels, while no significant differences were found in satisfaction with demonstration videos, experiment operation guides, and post-experiment discussion and Q&A sessions.

	Educational Level	Mean	Standard Deviation	F	р
	Undergraduate	3.646	0.897		
Satisfaction with Demonstration Videos	Master's Degree	3.609	0.867	1.29	0.277
	Ph.D	3.847	0.817		
Satisfaction with Experiment Operation	Undergraduate	3.555	1.019		
Cuides	Master's Degree	3.620	1.080	1.444	0.238
Guiues	Ph.D	3.840	1.028		
Satisfaction with Interactive Evneriment	Undergraduate	3.413	0.849		
Satisfaction with Interactive Experiment Sessions	Master's Degree	3.519	1.142	6.608	0.002
	Ph.D	3.967	0.866		
Satisfaction with Resources Provided by	Undergraduate	3.215	0.904		
the Course	Master's Degree	3.155	0.923	3.3	0.038
the course	Ph.D	3.547	0.857		
Satisfaction with Teacher's Guidance on	Undergraduate	3.362	0.983		
Fyneriments	Master's Degree	3.407	1.006	3.655	0.027
Experiments	Ph.D	3.787	0.954		
Satisfaction with Post-Experiment	Undergraduate	3.289	0.958		
Discussion and $\Omega \& \Lambda$ Sessions	Master's Degree	3.233	1.080	2.538	0.081
Discussion and Q&A Sessions	Ph.D	3.613	1.011		
	Undergraduate	3.290	1.291		
Overall Satisfaction	Master's Degree	3.420	1.260	5.896	0.003
	Ph.D	3.980	1.097		

Table 11: Educational Level Difference Analysis

The results indicate significant differences in satisfaction with interactive experiment sessions, resources provided by the course, teacher's guidance on experiments, and overall satisfaction among participants with different educational backgrounds. Specifically, PhD students generally reported higher levels of satisfaction. However, no significant differences were observed in other areas (such as satisfaction with demonstration videos, experiment operation guides, and post-experiment discussion and Q&A sessions) among participants with different educational backgrounds.

Major

A one-way ANOVA showed no significant differences in satisfaction with demonstration videos, experiment operation guides, interactive experiment sessions, resources provided by the course, teacher's guidance on experiments, post-experiment discussion and Q&A sessions, and overall satisfaction among participants from different majors.

	Major	Mean	Standard Deviation	F	р
	Biology	3.770	0.819		
	Chemistry	3.598	0.965	0.400	0.004
Satisfaction with Demonstration Videos	Physics	3.659	0.933	0.498	0.684
	Other Related Fields	3.702	0.669		
	Biology	3.638	0.941		
Satisfaction with Experiment Operation	Chemistry	3.677	1.012	1 007	0.251
Guides	Physics	3.462	1.167	1.097	0.351
	Other Related Fields	3.754	0.969		
	Biology	3.678	0.856		
Satisfaction with Interactive Experiment	Chemistry	3.495	1.016	1 17	0 221
Sessions	Physics	3.417	1.029	1.17	0.321
	Other Related Fields	3.643	0.852		
	Biology	3.322	0.777		
Satisfaction with Resources Provided by	Chemistry	3.261	0.936	0.224	0.88
the Course	Physics	3.197	0.973	0.224	0.88
	Other Related Fields	3.257	0.902		
	Biology	3.477	0.957		
Satisfaction with Teacher's Guidance on	Chemistry	3.516	0.971	0 781	0 505
Experiments	Physics	3.311	1.088	0.781	0.303
	Other Related Fields	3.503	0.920		
	Biology	3.333	1.011		
Satisfaction with Post-Experiment	Chemistry	3.392	0.993	0.617	0.605
Discussion and Q&A Sessions	Physics	3.208	1.023	0.017	0.005
	Other Related Fields	3.392	1.020		
	Biology	3.450	1.216		
Overall Satisfaction	Chemistry	3.510	1.276	0 184	0 907
Overan Satisfaction	Physics	3.420	1.345	0.104	0.907
	Other Related Fields	3.350	1.232		

Table 12: Analysis of Differences by Major

Regardless of their major, whether it's biology, chemistry, physics, or other related fields, the analysis shows no significant differences in satisfaction across all aspects. This indicates that participants from different academic majors have similar evaluations for experimental demonstration videos, experiment operation guides, interactive experiment sessions, course resources, teacher guidance, discussion and Q&A sessions, as well as overall satisfaction.

In conclusion, while gender and major do not significantly influence satisfaction evaluations, factors such as age and educational level might impact participants' experiences. Particularly, participants with higher educational qualifications and older age tend to have higher satisfaction ratings.

Hypothesis	Research Hypothesis	Verification	Coefficient	P-value
Number		Result		
H1	The clarity of the video positively	Supported	0.18	0.001
	influences students' course			
	satisfaction.			
H2	The understandability of	Supported	0.227	0
	experimental operation guides			
	positively influences students'			
	course satisfaction.			
Н3	The practicality of experimental	Not	0.097	0.058
	interaction positively influences	Supported		
	students' course satisfaction.			
H4	The quality of resources provided	Supported	0.149	0.005
	by the course positively influences			
	students' course satisfaction.			
Н5	The quality of teacher guidance	Not	0.083	0.137
	positively influences students'	Supported		
	course satisfaction.			
H6	Post-course discussion and Q&A	Supported	0.144	0.008
	sessions positively influence			
	students' course satisfaction.			

Table 13: Verification	Results	of Research	<i>Hypotheses</i>
------------------------	---------	-------------	-------------------

5 CONCLUSION

5.1 Conclusion

This study delves into user satisfaction with online course apps in the era of digital evolution, emphasizing their role in modern education. By conducting a series of analyses on 300 respondents, the research uncovers variations in app usage and identifies key satisfaction drivers like experimental resources, course quality, and teaching effectiveness. The reliability of the survey instruments is confirmed, and six principal influencing factors are pinpointed through exploratory factor analysis. Moreover, correlation analysis sheds light on how different satisfaction dimensions interrelate, guiding the enhancement of online course apps. Overall, the study offers a comprehensive examination of user satisfaction with online course apps, contributing valuable insights to the field of online education.

References

- Archdeacon, T. J. (1994). Correlation and regression analysis: A Historian's Guide. Univ of Wisconsin Press.
- Brace, I. (2008). *Questionnaire design: How to Plan, Structure and Write Survey Material for Effective Market Research.* Kogan Page Publishers.
- Conrad, D., & Openo, J. (2018). Assessment Strategies for Online Learning: Engagement and authenticity. https://doi.org/10.15215/aupress/9781771992329.01
- DeVellis, R. F. (1991). Scale Development: Theory and applications. https://ci.nii.ac.jp/ncid/BB06453461
- Fabrigar, L. R., & Wegener, D. T. (2012). Exploratory factor analysis. Oxford University Press.

Golberg, M. A., & Cho, H. A. (2004). Introduction to regression analysis. Witpress.

- Jiang, B., Liang, L., Jia, W., Wang, J., & Liu, Y. (2019). Design and Example of Mechanical Course Experiment Project Based on VR Technology. *China Educational Technology & Equipment*, 02, 1671-489X(2019)02-0036–03. https://doi.org/10.3969/j.issn.1671-489X.2019.02.036
- Rueda, L., Benitez, J., & Braojos, J. (2017). From traditional education technologies to student satisfaction in Management education: A theory of the role of social media applications. *Information & Management*, 54(8), 1059–1071. https://doi.org/10.1016/j.im.2017.06.002
- Williamson, K., & Johanson, G. (2017). Research methods: Information, Systems, and Contexts. Chandos Publishing.

- Wisdom Tree. (2003). About Wisdom Tree_Wisdom Tree Online Education. Retrieved January 18, 2024, from https://www.zhihuishu.com/aboutus.html
- Zacks, S. (2012). Introduction to reliability Analysis: Probability Models and Statistical Methods. Springer Science & Business Media.
- Zhang, X., & Sun, L. (2022). A Study on the Influencing Factors of Online Learning Satisfaction of Open Education Students Based on Explanatory Structural Modeling. *Adult Education*, 3, 1001-8794(2022)03-0048–10. https://doi.org/10.3969/j.issn.1001-8794.2022.03.009