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Abstract: In factor analysis, the indeterminacy of factor scores brings the possibility to produce 
multiple solutions, which often do not reproduce the true correlations of the factors in a 
measurement model. Grice (2001) emphasizes the need to evaluate the similarity between the 
correlations of the factors in the measurement model and those of their factor scores, terming this 
similarity correlational accuracy. Existing factor score techniques address this issue within a single 
measurement model, posing a limitation when multiple models are relevant. Moreover, Grice's 
proposal lacks a well-defined methodological framework. This article addresses these limitations by 
introducing two systematic categories of analysis: internal and external correlational accuracy. In 
the first of these, we create a well-defined methodological path for Grice's proposal. In the second, 
we create a way of evaluating factor scores in the context of various measurement models. A step-
by-step method and examples are presented.  
 
Keywords: Correlational Accuracy; Factor score indeterminacy; Factor analysis; Psychometrics; 
Tests. 
 
 
1. Introduction 

Studies of factor score indeterminacy show that the factorial scores of measurement models 
tend to be biased, as they usually produce multiple solutions (Ferrando & Lorenzo-Seva, 2018), 
which mostly do not reproduce the true correlations between the factors (Croon, 2002; Devlieger et 
al., 2016; Grice, 2001; Skrondal & Laake, 2001; Steiger, 1979). This is quite problematic since the 
use of factor scores has become a worldwide trend of broad practice in predictive studies (Devlieger 
et al., 2019). 

Grice (2001) states that this is unacceptable and defends the need for an assessment that 
examines the similarity between the correlations of the factors in the measurement model and the 
correlations of their factor scores, calling this similarity correlational accuracy. In mathematical 
terms, Grice's (2001) correlational accuracy indicates the extent to which the correlations among the 
estimated factor scores match the correlations among the factors themselves. This similarity is 
measured by the elementwise difference between the factor score correlation matrix and the true 
factor correlation matrix. This difference indicates the degree of bias in the factorial scores.  

Factor score bias has important implications in research and clinical practice. Suppose a 
clinician applies a test measuring perfectionism and anxiety to her patients. She wants to assess 
whether perfectionism plays an important predictive role in explaining her patients' anxiety. She 
performs a factor analysis with two factors (perfectionism and anxiety) and calculates the factor 
scores. If the true correlation between perfectionism and anxiety is .80, then perfectionism predicts 
64% of the variance in anxiety. On the other hand, if the factor scores for perfectionism and anxiety 
show a correlation of .50, there is a bias of -.30 (Δ = .80 - .50 = -.30). This bias will lead the 
clinician to wrongly conclude that perfectionism only predicts 25% of patients' anxiety, losing 39% 
of the true prediction.  

Grice's (2001) warning and the factor score techniques created to solve this problem (i.e. 
Beauducel et al., 2023; McDonald, 1981; Ten Berge et al., 1999) were designed for the context of a 
single measurement model. This limitation of context creates an important problem, as there are 
frequent situations in which it is not appropriate to run a single measurement model. For example, 
there is a lot of evidence in the psychometric literature that fit indices are not good for detecting 
local fit in confirmatory factor analysis and structural equation modeling (Thoemmes et al., 2018). 
If a model has a factor structure with three tests (A, B and C), fit indices are not able to properly 
assess whether the factor structure of test A, B or C has adequate fit. To obtain fit indices that 



International Journal of Education and Research                     Vol. 12 No. 1 January 2024 
 

37 
 

properly assess the factor structure of each test, the researcher needs to break down the complete 
model into a model for each test. Another frequent situation in which it is not appropriate to run a 
single measurement model occurs when the sample is not large enough to properly estimate the 
parameters of a complex factorial structure (Jobst et al., 2023). In addition to the limitation of the 
context, Grice's (2001) proposal does not define a well-defined methodological path. 

In this article, we created two systematic categories of analysis: internal and external 
correlational accuracy. First, we created a well-defined methodological path for Grice's (2001) 
proposal. Then, we developed a systematic way of evaluating the factor scores in the context of 
various measurement models. We also present a step-by-step method and examples of its 
application. 
 
2. Methodology 

Let's assume a multi-factor model, with all the factors being estimated in a single 
measurement model, at the same time. If the factor scores faithfully reproduce the true latent 
correlations between these factors, we will have perfect internal correlational accuracy. In this case, 
we call internal correlational accuracy the assessment of the degree to which the true latent 
correlations are reproduced in a single measurement model. For this category of systematic analysis, 
we must follow the following assumptions: (1) there must be a single measurement model, which 
can contain either the factor structure of part of a test, a whole test, or two or more tests; (2) factor 
scores must be extracted from this model; (3) true correlations between the factors are estimated via 
confirmatory factor analysis and structural equations modeling; (4) the measurement model must be 
multidimensional. 

The well-defined methodological path for Grice's (2001) proposal is presented below: 
1 The measurement model must be tested via confirmatory factor analysis or structural 
equations modeling. 
2 The tested measurement model must have an acceptable fit. If not, test a new model. 
You can use your preferred fit indexes; we suggest using CFI ≥ .90 and RMSEA < .10. 
3 Having a model with acceptable fit, check the correlations between the factors, 
assumed to be the true ones. 
4 Estimate the factor scores of the model, selecting one of the available factor 
generation techniques. 
5 Calculate the correlations of the estimated factorial scores. 
6 Calculate the distance of these correlations from the true correlations (Δ = factorial 
score correlation - true correlation) to estimate the correlational accuracy bias. 
We call external correlational accuracy the assessment of the degree to which the true latent 

correlations are reproduced in the context of multiple measurement models. For this category of 
systematic analysis, we must follow the following assumptions: (1) there must be the analysis of 
three or more measurement models separately.  Each separate model may be part of a factorial 
structure of a test, the complete factorial structure of a test, or it may contain the factorial structure 
of two or more tests; (2) True correlations among factors from separate models can be estimated 
using either pairwise confirmatory factor analysis or pairwise structural equations modeling. If 
models A, B, C, and D each have a single factor, we perform confirmatory factor analyses for pairs 
A-B, A-C, A-D, B-C, B-D, and C-D. The resulting estimated correlations between factors are 
considered accurate, creating a true correlation matrix. 
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The methodological path of external correlational accuracy is presented below: 
1 Each separate measurement model must be tested via confirmatory factor analysis or 
structural equations modeling. 
2 Each separate model must have acceptable fit. If not, a new separate model needs to 
be tested.   
3 Confirmatory factor analyses or structural equations modeling of the pairwise 
models should be performed. When creating pairwise models, the factors in one model are 
correlated with those in another model. 
4 Inspect the correlations between the factors in each pairwise model, assuming them 
to be true. 
5 Estimate the factor scores of the separate models from step 2, selecting one of the 
available factor generation techniques. 
6 Calculate the correlations of the estimated factor scores. 
7 Calculate the distance of these correlations from the true correlations (Δ = factorial 
score correlation - true correlation). 

 
3. Internal correlational accuracy: Example 
 We apply internal correlational accuracy to evaluate the bias of factorial scores from a Fluid 
Intelligence Kit (CTIF) measurement model. The CTIF consists of three tests, each of them 
measuring a specific reasoning ability: general reasoning, inductive reasoning and logical reasoning. 
In addition to specific abilities, the CTIF measures the broad ability of fluid intelligence (Details 
about the CTIF can be seen in Table 3).     
 
Step 1 - The measurement model should be tested. 

The CTIF measurement model tested is a bifactor model with the presence of one general 
latent variable, fluid intelligence, and three specific latent variables, inductive reasoning, logical 
reasoning, and general reasoning, all orthogonalized to each other. We applied item confirmatory 
factor analysis for this model with the Weighted Least Square Mean and Variance Adjusted 
(WLSMV) estimator and using the lavaan package (Rosseel, 2012).  
 
Step 2 - The tested measurement model needs to have acceptable fit.  

The tested model had acceptable fit (χ² [1506] = 3427.38, CFI = .926, RMSEA = .040 [.038 
- .042]). 

 
Step 3 - Inspect the correlations between the factors, assuming them to be true. 

The model tested shows that all factors have zero true correlation.  
 

Step 4 - Estimate the factor scores of the model, selecting one of the available factor generation 
techniques. 

We used the lavaan package regression technique (Rosseel, 2012) to estimate the factor 
scores. We chose this technique because it is the default of the package and, consequently, the most 
widely used.   
 
Step 5 and 6 - Calculate the correlations of the factor scores and the distance of these 
correlations from the true correlations to estimate the correlational accuracy bias. 

Table 1 presents the calculations of steps 5 and 6 and reports the bias of the factorial scores 
of the CTIF measurement model. For example, the difference of the correlation of the factor scores 



International Journal of Education and Research                     Vol. 12 No. 1 January 2024 
 

39 
 

of general reasoning (GR) and inductive reasoning (IR) from the true correlation is -.120 (see Table 
1). The difference is obtained as follows: factorial score correlation [-.120] - true correlation [0] = -
.120. When the value of the difference (Δ) is negative, the correlation of the factor scores is lower 
than the true correlation. When the difference (Δ) is positive, the correlation of the factorial scores 
is greater than the true correlation. 
 
Table 1 
Internal correlational accuracy bias of CTIF´s factor scores 

Model  Factor scores correlations Difference of the correlations of the factor 
scores from the true correlations 

IR LR GR Gf Δ IR Δ LR Δ GR Δ Gf 

CTIF 

IR 1    0    
LR .049 1   .049 0   
GR -.120 .156 1  -.120 .156 0  
Gf .120 .078 .159 1 .120 .078 .159 0 

Note. IR = Inductive reasoning, LR = Logical reasoning, GR = General reasoning, Gf = Fluid intelligence. 
 
4. External correlational accuracy: Example  
 We apply external correlational accuracy to evaluate the bias of factorial scores of the CTIF, 
the Approaches to Learning Scale (EABAP), and the CTCAM-Monitoring. The EABAP is a test 
designed to assess students' learning approaches, specifically measuring the deep and surface 
approaches. The CTCAM-Monitoring comprises items from the Academic Knowledge and 
Metacognition Testbooks. It evaluates the metacognitive ability of monitoring, which is the ability 
to detect errors while performing an activity. (See Table 3 for more information about the tests). 
 
Step 1 - Each separate measurement model should be tested. 

The CTIF measurement model was the same as the one used in the analysis of internal 
correlational accuracy. For the EABAP, a correlated factor measurement model was tested in which 
the deep and surface approach latent variables correlate. For CTCAM-Monitoring, a unidimensional 
measurement model was tested in which the latent variable is monitoring ability. We applied item 
confirmatory factor analysis with the Weighted Least Square Mean and Variance Adjusted 
(WLSMV) estimator, using the lavaan package (Rosseel, 2012). 
 
Step 2 - Each separate model must have acceptable fit. 
The three models showed acceptable fit, CTIF (χ² [1506] = 3427.38, CFI = .926, RMSEA = .040 
[.038 - .042]), EABAP (χ² [118] = 622.22, CFI = .956, RMSEA = .073 [.068 - .079]) and CTCAM-
Monitoring (χ² [2] = 1.304, CFI = 1.000, RMSEA = .000 [.000 - .062]). 
 
Step 3 - Confirmatory factor analyses or structural equation modeling from the pairwise models.  

Given that three measurement models are used in this example, there are three pairwise 
models developed: 

1 CTIF (bifactor model) and EABAP (correlated factor model); 
2 CTIF (bifactor model) and CTCAM-Monitoring (one-dimensional model); 
3 EABAP (correlated factors model) and CTCAM-Monitoring (one-dimensional 
model). 

We applied confirmatory factor analysis of items for each pairwise model with the Weighted 
Least Square Mean and Variance Adjusted (WLSMV) estimator, using the lavaan package 
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(Rosseel, 2012). For each pairwise model, the factors in one model are correlated with those in 
another model. 
 
Step 4 - Inspect the correlations between the factors in each pairwise model, assuming them to be 
true. 

Table 2 shows true factor correlations extracted from each pairwise model. 
 
Step 5 - Calculate the factor scores for each model from step 2 using one of the available factor 
generation techniques. 

We used the lavaan package regression technique (Rosseel, 2012) to estimate the factor 
scores for each model from step 2. 
 
Step 6 and 7 - Calculate the correlations of the factorial scores and the distance of these 
correlations from the true correlations to estimate the correlational accuracy bias. 

Table 2 shows the bias of the factorial scores of the CTIF, EABAP and CTCAM-Monitoring 
measurement models. Some biases were substantial. For example, the true correlation of deep 
approach (DA) with general reasoning (GR) is .34, but the correlation of the factorial scores was 
.18, producing a bias of Δ = -.16. The bias between fluid intelligence and monitoring was even 
greater (Δ = -.21). 
 
Table 2 
External correlational accuracy bias of CTIF, EABAP and Monitoring 

Model  IR LR GR Gf DA SA Mon 

Factor scores correlations 

IR 1 .05 -.12 .12 -.01 .04 .07 
LR  1 .16 .08 .04 -.04 .16 
GR   1 .16 .18 -.20 .18 
Gf    1 .18 -.21 .56 
DA     1 -.76 .23 
SA      1 -.24 

Mon       1 

Pairwise true correlations from pair 
models 

IR 1 .00 .00 .00 .01 .05 .04 
LR  1 .00 .00 .06 -.05 .22 
GR   1 .00 .34 -.36 .19 
Gf    1 .15 -.22 .77 
DA     1 -.65 .31 
SA      1 -.35 

Mon       1 

Difference between correlation 
matrices (Δ = Factor scores 
correlations – Pairwise true 

correlations from pair models) 

IR 0 .05 -.12 .12 -.02 -.01 .03 
LR  0 .16 .08 -.02 .02 -.06 
GR   0 .16 -.16 .16 -.01 
Gf    0 .03 .02 -.21 
DA     0 -.11 -.08 
SA      0 .11 

Mon       0 
Note. IR = Inductive reasoning, LR = Logical reasoning, GR = General reasoning, Gf = Fluid intelligence, DA = Deep 
Approach, SA = Surface Approach, Mon = Monitoring. 
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5. Pondering over a Cut-Off Point for Factor Score Bias 
The correlational accuracy bias need not be zero. For example, a Δ = ±.01 does not represent 

relevant biases. We should think about the magnitude of the bias and the size of inadmissibility. A 
Δ = ±.10 seems impressive to us. Suppose factor A is used to predict factor B. If the true correlation 
between these factors is .54, then the proportion of the variance of B which is explained by A is 
29.16%. If the factor score correlation between those factors were .44 (Δ = -.10), then the 
proportion of the variance of B which is explained by A would be 19.36%, losing 33.61% of the 
true prediction. The same is true if the factor score correlation between factor A and B were .64; in 
that case, the proportion of the variance of B explained by A would be 40.96%, overestimating the 
true prediction by 40.47%. It seems to us that a difference of up to .050 is acceptable. The user may 
also prefer not to use any cutoff point and just report the impact of the bias. 
 

Table 3 
The Data and Instruments of Our Examples 

Sample 
 

The sample is composed of 792 high school students (51.25% female and 55.55% enrolled in 
private schools); Five schools from Belo Horizonte and Viçosa, Minas Gerais, Brazil; Age 
ranged between 14 and 21 years-old (M = 16.3, SD = 1.00); Distributed homogeneously in high 
school grades (35.60% in first-year, 29.04% second-year and 34.36% third-year). 

  

Fluid 
Intelligence Kit 

(CTIF) 
 

CTIF is composed by Induction Test, Logical Reasoning Test, and General Reasoning Test 
(Gomes & Borges, 2009c); CTIF is part of the Higher-Order Cognitive Factors Battery 
(BAFACALO), which was created by C. M. A. Gomes after his doctorate studying the Carroll’s 
model of intelligence (Gomes, 2005; Gomes & Borges, 2007, 2008b). BAFACALO measures 
cognitive abilities of the Cattell-Horn-Carroll model (Golino & Gomes, 2014a, 2014b) and it has 
18 intelligence tests. The tests are available only for research and teaching purposes, on 
Researchgate platform (Gomes & Nascimento, 2021a, 2021b, 2021c, 2021d, 2021e, 2021f, 
2021g, 2021i, 2021j, 2021l, 2021m, 2021n, 2021o, 2021p; Gomes, Nascimento, et al., 2021a, 
2021b, 2021c, 2021d). BAFACALO has evidence of internal validity (Gomes, 2010b, 2011b, 
2012; Gomes & Borges, 2009a, 2009b, 2009c; Gomes, de Araújo, et al., 2014; Gomes & Golino, 
2015) and external validity (Alves et al., 2012; Gomes, 2010a; Gomes & Golino, 2012a, 2012b; 
Gomes, Golino, et al., 2014). BAFACALO is a reference for the construction of many other 
intelligence tests, such as Inductive Reasoning Development Test [Logical Reasoning 
Development Test (TDRI)] (Golino & Gomes, 2015, 2019; Golino, Gomes, et al., 2014) and 
TDRI-SR (Gomes, Araujo, et al., 2021). 

  

Approaches to 
Learning Scale 

(EABAP) 
 

The EABAP comes from a line of research on students' beliefs about teaching and learning 
(Gomes & Borges, 2008a). It is a self-report test and has 9 items for the deep approach measure 
and 8 items for the surface approach measure. The EABAP has several pieces of evidence about 
its internal and external validity (Gomes, 2010c, 2011a, 2013; Gomes, Araujo, et al., 2020; 
Gomes & Golino, 2012b; Gomes et al., 2011; Gomes, Farias, et al., 2022), as well as being a 
reference for the construction of other tests of learning approaches (Araujo et al., 2023; Carvalho 
& Gomes, 2023; Gomes, 2021, 2022; Gomes, Araujo, et al., 2022; Gomes, Jelihovschi, et al., 
2022; Gomes & Linhares, 2018; Gomes, Linhares, et al., 2021; Gomes & Nascimento, 2021h, 
2021k; Gomes, Quadros, et al., 2020; Rodrigues & Gomes, 2022; Santos et al., 2023). 

  
Booklets for 

Testing 
Academic 

Knowledge and 
Metacognition 

(CTCAM-
Monitoring) 

The CTCAM is composed of three booklets aiming to measure the following constructs: 
academic knowledge, monitoring, and judgment (Costa, 2018). Each booklet has 40 items, 10 of 
them to measure academic knowledge, 10 to measure monitoring, and 20 to measure judgment. 
The booklets have some items in common. In our empirical analysis example, we used only the 
common items that were answered by all participants pertaining to measure the monitoring, i.e., 
items 4, 5, 8, and 10. Monitoring is the metacognitive ability of people to detect errors at the 
moment they are performing a task/activity. Validity evidence and more details about the 
Academic Knowledge and Metacognition Testing Booklets are presented in Costa (2018). 

Note. The data that support the examples of this study are available from the corresponding author upon request. 
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6. Conclusion 
The methodology presented in the article contributes to the methodological systematization 

of Grice's (2001) proposal and also creates a methodology that allows factor scores to be evaluated 
in the context of various measurement models, the greatest contribution of our work. 

We refine the correlational accuracy criterion of Grice (2001) by creating two categories of 
analysis: internal and external correlational accuracy. These categories highlight two distinct 
contexts in which factor scores should be evaluated. Internal correlational accuracy represents the 
context of the example presented by Grice (2001), i.e., an evaluation of the factor scores extracted 
from a single measurement model. On the other hand, external correlational accuracy indicates the 
context in which the factor scores evaluated come from different measurement models. Each 
context demands its own evaluation, since factor scores can present adequate internal correlational 
accuracy and inadequate external correlational accuracy, and vice versa. 

We present a step-by-step methodological procedure for the execution of the evaluation of 
internal correlational accuracy and external correlational accuracy. It presents objective processes 
that allow the researcher to use a well-defined and executable procedure. To execute it, the 
researcher only needs to have basic knowledge of confirmatory factor analysis or structural 
equations modeling. 

We hope that our article will encourage the scientific community to routinely evaluate the 
correlational accuracy of factor scores, especially if these scores are used for analyses. As we argue, 
a relevant bias in correlational accuracy substantially compromises the quality of the measures and, 
consequently, the quality of the analyses that use them. 
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