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Abstract The objective of this article is to address the frequently found academic opinion

that in order to calculate the population variance, the sum of the squared deviations from

the mean should be divided by the non-reduced number of summands, and not, as is the

case for the sample variance, by one less. In reality, the question regarding the subtraction

of one has nothing to do with whether it concerns a population or a sample; the decisive

factor is whether the sum of squares refers to all measurement values or to characteristic

values that are equally probable (or frequent). In the latter case, the full number is the

divisor. However, if the sum of squares contains all measurement values of a sample or

a population, one must be deducted from the overall number before it can be considered

suitable as a divisor. Nevertheless, and precisely because of this subtraction, the variance

becomes an average spread in the sense that it is not subject to a trend with regard to the

number of data points, so that variances of populations of different sizes can be compared

to each other.

Keywords: variance definition, population variance, sample variance, unbiased estimate,

sampling techniques, variogram.
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1 Introduction

Conventional wisdom dictates that in order to calculate the population variance, the

sum of squared deviations from the mean should not be divided by N − 1, but rather

by the number of all individual items, N . At a first glance, a divisor N may appear

uncontroversial for population variance, since it is believed that this method achieves an

average measure. But this is not true. As shall be shown in Section 3, an average measure

of statistical dispersion only results from the subtraction of 1 for the divisor of the sum

of squares; an average measure in the sense that it is not subject to a trend with regard

to the data quantity.

However, if we also use the divisor N − 1 for the population variance, are we not creating

a conflict with the probability theory? The variance of a random variable or distribution

is defined by Var(X) = E([X−E(X)]2), which in a discrete uniform distribution leads to

a division of the sum of squares by the number of the different characteristic occurrences,

and there is no hint of a subtraction of 1!

Likewise to Bachmaier (2010), this article provides the striking criterion when the sub-

traction of 1 is necessary and when it is not. This criterion is independent of whether the

variance relates to a population or a sample. It only depends on the meaning of the xi in

the variance formula, a simple thing, so simple that people are not aware of it. So, let us

first take a look at the text book literature.

2 Disagreement in the literature

The variance of a random variable X is defined as E([X − E(X)]2), which results in

dividing the square sum by the number of summands if X follows a discrete distribution

with equal probability mass on each support point. There is always complete consensus in

the literature when the variance refers to a random variable or its distribution. However,

this consensus ends when it refers to a finite set of data, as in the example above.

With regard to the population variance, many authors avoid the question of the divisor

of the deviation square sum from the mean by indicating only the variance of a random

variable (or its distribution) as well as a sample variance. However, these authors already
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cannot agree with regard to the sample variance. In this vein, Bosch (1993), Cox and

Cohen (1985), Kreyszig (1988), Snedecor and Cochran (1989), as well as Warren and

Grant (2001) use divisor n − 1, while Bortz (1993), Burkschat et al. (2004), Fahrmeier

et al. (2007) and Fowler (2009) favor divisor n, the sample size. The latter apparently

interpret the variance as an average square deviation from the mean, while the former

invoke arguments such as unbiasedness and the associated degrees of freedom, whereby

their unbiasedness refers to the variance σ2 of a random variable or its distribution, but

not of a finite population.

There is also disagreement among authors who do not differentiate between population

and sample. For example, Crawshaw and Chambers (2001) calculate the variance of a

“set of numbers” with its number as the divisor, while in Moore et al. (2009), the divisor

of the variance of a “set of observations” is smaller by 1. Wonnacott and Wonnacott

(1985) allow for both, but speak about the former as “mean squared deviation” and only

call the latter “variance”.

The two types of definitions for variance are more frequently found with finite populations,

which was not explicitly considered by the authors that have been mentioned so far.

Cochran (1977), Hansen et al. (1993) and Kish (1995) define its variance both via the

divisor N , the number of elements of the population, as well as via the divisor N−1. All of

these authors describe it as σ2 in the first case, and S2 in the latter. A preference for one

of the two definitions is not provided. Divisor N − 1 seems to derive its justification from

consistency with the sample variance, where these authors favored using divisor n−1, or,

as expressed by Cochran (1977), to “approach sampling theory by means of the analysis

of variance.” On the other hand however, the argument of an unbiased estimate, on the

basis of which the divisor of the sample variance has been reduced by 1, has fallen by

the wayside, since no estimate is required in the case of a population, so why reduce the

divisor N?

In contrast, Devore and Peck (1994), Lohr (1999) and Thompson (2002) follow a consistent

line. Similar to Moore et al. (2009), the divisor of the square sum is 1 less than the data

number, regardless of whether that number originates from a sample or a population.

The latter criterion only decides whether the divisor is described as N − 1 or n− 1. No

reason is indicated as to why 1 is subtracted for the population variance. Divisor N − 1

is also used by Sampath (2005) who however does not mention the sample variance.
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Those authors who use different definitions for population and sample variance without

compromise garner the most attention. These include Anderson et al. (2002), Clarke et

al. (2005), Levy and Lemeshow (1999), Sachs (1992), Scheaffer et al. (2006) as well as

Som (1996). They use N as the divisor as soon as it concerns a population, and n − 1

if it refers to a sample. For Scheaffer et al. (2006), it is only possible to detect the

use of N on the basis of an example on page 53. Sachs (1992) effectively abandons the

subtraction of 1 in the divisor if the average value is known. The use of different divisors

is surprising with regard to Levy and Lemeshow (1999) and Som (1996) to the extent

that they mention that [(N − 1)/N ]s2 provides an unbiased estimate of their σ2 defined

with the divisor N , or s2 estimates [N/(N − 1)]-times of their σ2 without bias. At the

same time, Som (1996) also mentions that some textbooks also use the divisor N − 1 for

population variances. Clarke et al. (2005) on the other hand justify divisor n − 1 for a

sample variance with unbiasedness for the variance of a random variable, but in doing so

they do not provide a reason for why they use divisor N to calculate the variance of a

finite population. On the other hand, Anderson et al. (2002) contend that divisor n − 1

of a sample variance leads to an unbiased estimate for the population variance as defined

with divisor N . They do not mention that this only applies to the rather unusual case

of sampling with replacement. Hedayat and Sinha (1991) also use a divisor N for the

population variance, without providing any reasons; the estimation of this variance using

a sample is not part of the topic of their book.

The less than unanimous variance definitions found in this overview of literature are

unlikely to assist our student, especially since his desire for a fair variance comparison

with different data numbers has not even been touched.

Moreover, this overview of literature leaves one with the impression as if there were no

definition per se; each definition seems to have advantages and disadvantages. However,

all the discrepancies mentioned above are easily solved. There is always a way of appro-

priately defining variance. To demonstrate this, we begin with an alternative definition of

variance that is based on pairwise differences and just on this basis already offers better

insights into the nature of the variance.
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3 Variance definitions based on pairwise differences

As already mentioned in Bachmaier (2010), the idea of a measure of statistical dispersion

is better defined by way of pairwise differences, since this does not require an estimate

of a nuisance parameter, such as the mean. However, this clarifying definition, which

also forms the foundation of an empirical variogram (Bachmaier and Backes, 2008, 2011),

seems to be little known; with regard to all the textbooks referenced in the present article,

it is only mentioned by Hedayat and Sinha (1991).

The following applies to the usual sample variance s2 and the maximum likelihood esti-

mate s2∗ (Hedayat and Sinha, 1991, with proof ):

s2 =
1

n− 1

n∑

i=1

(xi − x̄)2 (1)

=
1

2
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If one refers to characteristic values x1, x2, . . . , xN of a population with N individual items,

the definition with a divisor N is often considered as the actual one; however, for the sake

of consistency with the above definitions we will refer to it as σ2
∗ , while the actual variance

name σ2 receives the definition with the divisor N − 1 (Hedayat and Sinha, 1991, with

proof ):
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Goalie Defencemen Forwards

Squared age Hähnel Moburg Pufal Michl Welz Möhle

differences * 1992 * 1977 * 1981 * 1989 * 1976 * 1989

Hähnel * 1992 — 225 121 9 256 9

Moburg * 1977 225 — 16 144 1 144

Pufal * 1981 121 16 — 64 25 64

Michl * 1989 9 144 64 — 169 0

Welz * 1976 256 1 25 169 — 169

Möhle * 1989 9 144 64 0 169 —

Table 1: Squared pairwise age differences of six Landshut Cannibals players

Example 1: The difference between the divisorsN andN−1 will now be demonstrated by

means of the average age of six ice hockey players at Landshut Cannibals. For simplicity’s

sake, we will use the year of birth of the players as a basis, so that their ages will only be

accurate to the year.

As the team currently playing on the ice, the selection ofN = 6 players forms a population.

On the other hand, it constitutes a sample of size n = 6, for instance to make inferences

about the variance in ages of the entire team. These two perspectives suffice to make

it inappropriate to calculate the variance for the population and the sample in different

ways.

Table 1 illustrates the difference between the two variance calculations. While for s2∗ and

σ2
∗ in (4) and (8) the age differences between self-identical players, which are zero by

default, are considered just as all other differences — whereby the dash “—” in the table

is to be interpreted as zero for this purpose — these zero differences are not considered

for s2 and σ2 in (2) and (6). The dash “—” in this case means “does not apply”. At

the same time, zero differences that result from players of the same age flow into the

variance calculation. While the fact that Möhle is the same age as himself does not offer

any information with regard to the spread of the age, the same age of forwards Möhle and

Michl points to the age homogeneity of the team, which should bring the variance closer

to zero.

6



International Journal of Education and Research Vol. 1 No. 6 June 2013

The table shows that the share of self-identical pairwise comparisons on the main diagonal

increases as fewer players are compared. The larger the share of these zero differences

that are devoid of information, the more downward pressure it exerts on the variance σ2
∗.

If only one player is examined, e.g., the goal keeper, this share even increases to 100%

and the variance σ2
∗ of the age is 0, even though no information regarding a dispersion is

available with one player. In contrast to this, variance σ2 for N = 1 remains undefined.

If we now examine the two defenders playing on the ice as a population, the mentioned

share still makes up half, while for the three forwards only a third of comparisons result

in self-identical differences. When we expand our view to all of the world’s ice hockey

teams, we would conclude that with regard to age, a forward line varies more than a

defensive line, as long as the ‘varying’ is measured with the σ2
∗ variance. Debates could

start as to why trainers use more homogeneous players as regards age in defensive rather

than offensive lines. However, if one measures the heterogeneity of age with σ2, these

discrepancies do not occur.

We can see that the question regarding a fair variance comparison for different data

numbers clearly speaks in favor of a divisor N − 1. A variance calculation using divisor

N instead of N − 1 is comparable with the range for the measurement of the dispersion.

Qualitatively, the resulting misrepresentation would be the same in both cases.

4 Which population variance is estimated without

bias by the sample variance?

Is the population variance σ2
∗ in (7) at least justified by the fact that it is estimated

without bias by the usual sample variance s2 in (1)? Can a sample of n = 5 result in

an unbiased estimate for the variance of a population with N = 6 by dividing the sum

of squares of the sample variance by n − 1 = 4, and that of the population variance by

N = 6? Of course not, unless the sample is taken with replacement. The variance s2 of

a sample without replacement does not estimate σ2
∗, with the divisor N , in an unbiased

manner; rather [N/(N − 1)]σ2
∗, which is σ2, where the divisor is also 1 less than the

data quantity (Cochran, 1977; Kish, 1995; Levy and Lemeshow, 1999; Som, 1996). The

variance definitions based on pairwise difference creation show how trivial this is:
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Proof that E(s2) = σ2: Vector (x1, x2, . . . , xN) with length N describes the data of the

population. To calculate the expected value of s2 (which is here a random variable), it

is helpful to illustrate the random vector (X1, X2, . . . , Xn) with length n ≤ N , which

represents the sample without replacement, via a random vector (π1, π2, . . . , πn) which

indicates the indices of selected individuals. Each index vector would therefore appear

with the same probability. It is 1/[N(N − 1)(N − 2) · · · (N − n+ 1)]. The following then

applies to the random variable, which indicates the ith sample value:

Xi = xπi
(9)

whereby all Xi are identically distributed, but are not independent. The latter is not

required for the linearity of the expected value. Hence it can be quickly shown:
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Hence, for a normal case of sampling without replacement, the argument of unbiasedness

also clearly speaks for divisor N − 1.

5 The variance of a discrete distribution with equal

probability mass on each support point

Are we not creating a conflict with the probability theory when using the divisor N − 1

even for the population variance? The variance of a random variable X or its distribution

is defined by Var(X) = E([X − E(X)]2), which in a discrete distribution with equal

probability mass on each support point1 leads to a division of the sum of squares by the

number of support points, and there is no hint of a subtraction of 1!

However, a probability distribution does not relate to frequencies of a characteristic of a

finite population, but to a set of characteristic values whose occurrences are described by

a probability measure, and to approach a probability by a frequency, the population size

must tend to infinity. In particular, a discrete distribution with equal probability mass

on each support point xi, i = 1, . . . ,M , is not comparable to the characteristic values of

a finite population, x1, . . . , xM , but to those of an infinitely large imaginary population,

x1, . . . , xM , x1, . . . , xM , x1, . . . , xM , . . . , where each xi occurs an infinite number of times

and with the same frequency. The variance of this imaginary population of size N = ∞

can be computed as the following limit of the population variance formula in (5), which

is based on divisor N − 1:

Var(imag.pop.) = lim
k→∞

1

kM
︸︷︷︸

N

−1

M∑

i=1

k(xi − x̄)2 =
1

M

M∑

i=1

(xi − x̄)2 = Var(X). (20)

This shows that the population variance formula based on divisor N − 1 is compatible

with the variance of a random variable. As far as the theory of probability is concerned,

it does not play a role whether divisor N or N − 1 is used.

1To avoid misunderstandings, such a distribution should not be called a discrete uniform distribution,

unless the support points xi are equidistant.
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6 The significance of xi — one-time measurements

or recurring occurrences of characteristics

The preceding section also shows that the discrepancies with regard to different variance

definitions are based on the disregard of the exact significance of xi, and yet no one

seems to be aware of this. Both one-time measurements and recurring occurrences of

characteristics are denoted by xi, and different denotations for their number, such as

N and M in the preceding section, are usually not used. It seems as if many authors

imagined a finite population as a discrete distribution with equal probability mass on

each support point, and hence, they adopt the variance formula of this distribution when

calculating the variance of a finite population by using divisor N instead of N − 1.

The next example also concerns the same difference on the basis of a sample instead of a

population. In this case, nobody would make this mistake of disregarding the number of

occurrences.

Example 2: We are examining the coin toss. Heads win one Euro, while tails loses one

Euro. Let us assume someone tossed a coin 2000 times and has obtained approximately

1000 tails and 1000 heads. The sample only recognizes m = 2 different wins, x1 = +1

and x2 = −1. Both appear frequently and at approximately the same frequency, so

that the sample variance of the win can be approximated with s2 ≈ 1
m

∑m
i=1(xi − x̄)2 =

1
2
[(+1−0)2+(−1−0)2] = 1. Calculating with 1/(m−1) instead of 1/m would have yielded

2 as a result, which is completely wrong. To accurately obtain the sample variance, one

cannot bypass the formula in (1), which includes all n = 2000 measurement values xi in

the sum and hence has the divisor n− 1 = 1999.

7 Sampling with replacement

When sampling with replacement, the ordinary sample variance, s2 in (1), unbiasedly

estimates σ2
∗ in (7) with divisor N , and at a first glance, this seems to favor defining the

population variance with divisor N . However, drawing and replacing involves pretending

that each of the N individuals in the population is present an infinite number of times, and

hence, we have arrived at the imaginary population or discrete distribution in Section 5
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with the only exception that now identical xi in the original population and thus discrete

distributions with unequal probability masses, P (X = xi), are also possible. For example,

drawing with replacement from a finite population with the measurements 2, 3, 7, 7, 9

(N = 5) corresponds to drawing from a discrete distribution with support {2, 3, 7, 9}

and probability masses 0.2, 0.2, 0.4, and 0.2. Thus, what one unbiasedly estimates when

applying the ordinary sample variance to a sample based on drawing and replacing is not

the population variance, but the variance of a discrete distribution whose probabilities,

P (X = xi), equal the frequencies of the corresponding xi in the original, finite population.

The latter variance can be computed according to the last equation in (20), where the xi

are the measurements of the original population, which can be equal each other, and the

divisor M equals the size N of this finite population, whose variance should actually be

estimated.

This population variance continues to be represented by σ2 in (5). Its divisor is N−1, and

hence, the factor by which it is greater than the variance of the aforementioned discrete

distribution is N/(N − 1). Therefore, to obtain an unbiased estimate of the population

variance with data from sampling with replacement, the sample variance must be corrected

by this factor:

s2with repl. =
N

N − 1

1

n− 1

n∑

i=1

(xi − x̄)2. (21)

8 Summary of results and conclusions

In the case of a finite number of data, only s2 and σ2 in (1) and (5), where the sum of

deviances from the mean is divided by n− 1 or N − 1, are appropriate for a definition of

a variance. There are three reasons for this:

• They are the true average squared dispersion measures, as their averaging of pairwise

squared differences in the alternative formulae in (2) and (6) is not distorted by a

nuisance parameter.

• They enable a fair comparison of samples or populations of different size.

• They match with respect to unbiasedness in the usual case of sampling without

replacement: Neither is E(s2∗) = σ2
∗ nor E(s2) = σ2

∗ but E(s2) = σ2.
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Moreover, it is a lot easier to teach students to use the same variance formula for sample

and population than to use different formulae, especially as it is not always easy to differ

between sample and population. The variance estimate in (21) is an exception, since

drawing and replacing involves different conditions for sampling and finite population.

The question of whether the sum of squares is to be divided by the number of summands

or by one less,

• does not depend on the existence of either a population or sample,

• but rather depends on whether the sum of squares refers only to the different oc-

currences of a characteristic or to all measurement values.

If it refers to the latter, the divisor is one less than the number of summands. However,

where a characteristic is discrete and its M different values occur at the same frequency

and in great number, and more accurately even in infinite number, which can be described

by a discrete distribution with equal probability for each occurrence, the variance calcula-

tion can be shortened by exclusive reference to the different occurrences pursuant to the

limit result in (20). In that case however the divisor is not M − 1 but rather M .
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